Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1.
نویسندگان
چکیده
The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1's active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1's promiscuity and evolutionary potential.
منابع مشابه
IN VITRO EVALUATION OF ANTIOXIDANT CAPACITY OF THYMUS KOTSCHYANUS HYDRO-ALCOHOLIC EXTRACTS AND ITS EFFECT ON SERUM PARAOXONASE 1 ACTIVITY IN DIABETIC AND HEALTHY PERSONS
Background: Thymus species have significant amounts of phenolic and flavonoid compounds and demonstrate strong antioxidant activities. Paraoxonase1 act as antioxidant enzyme and protect the low-density lipoprotein against oxidation. In our study we aimed to evaluate the antioxidant capacity of Thymus Kotschyanus Hydroalcoholic extract and its effect on serum paraoxonase 1 activity in healthy an...
متن کاملEffect of Pomegranate Juice on Paraoxonase Enzyme Activity in Patients with Type 2 Diabetes
OBJECTIVE: The aim of this study was to investigate the effect of pomegranate juice (PJ) on the paraoxonase and arylesterase activity of human serum paraoxonase( PON1). MATERIAL AND METHOD: Fifty patients with type 2 diabetes mellitus consumed 200 ml of PJ daily for a period of 6 weeks. Blood was collected from the patients before and after PJ consumption after 12 h of fasting. Blood sugar, to...
متن کاملمطالعه فنوتیپها و فعالیت آنزیم پارااکسوناز در بیماران مبتلا به گرفتگی عروق کرونر
Paraoxonase can hydrolyse organophosphate esters and paraxon is its most important substrate in laboratory studies. This enzyme circulates in blood with HDL. It seems that reduced paraoxonase activity in human may increase risk of coronary artery disease. Genetic variations in two autosomal genes may reduce its activity. These variations produce three phenotypes: A, AB and B. B phenotype ac...
متن کاملEvaluation of structure of paraoxonase (PON) and its relationship with various diseases
The paraoxonase family in humans includes the PON1, PON2, and PON3 genes. These genes are located on the long arm of chromosome 7 and are structurally similar .Between the nucleotide sequences of these three genes is about 70% and between their amino acid sequences is about 60% compatibility. The three have 9 exons, which in the case of PON1 exists an addition code in position 106 (lysine) i...
متن کاملParaoxonase and Arylesterase Activities in Patients with Cancer
Background: Cancer has the highest disease-related mortality rate in Iran. Reduced activity of paraoxonase reported in patients with cancer may be due to a reduction in its antioxidant properties and a subsequent increased risk of developing cancer. We aimed to assess antioxidant and oxidative status in patients with cancer through measuring the activity of PON1 as an antioxidant enzyme and det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 418 3-4 شماره
صفحات -
تاریخ انتشار 2012